Lysogeny, or the lysogenic cycle, is one of two methods of viral reproduction (the lytic cycle is the other). Lysogeny is characterized by integration of the bacteriophage nucleic acid into the host bacterium's genome. The newly integrated genetic material, called a prophage can be transmitted to daughter cells at each subsequent cell division, and a later event (such as UV radiation) can release it, causing proliferation of new phages via the lytic cycle. Lysogenic cycles can also occur in eukaryotes, although the method of incorporation of DNA is not fully understood. The distinction between lysogenic and lytic cycles is that the spread of the viral DNA occurs through the usual prokaryotic reproduction, while the lytic phage is spread through the production of thousands of individual phages capable of surviving and infecting other bacterium.
Certain types of viruses replicate by the lysogenic cycle, but also partly by the lytic cycle (mixed cycles). Some DNA phages, called temperate phages, only lyse a small fraction of bacterial cells; in the remaining majority of the bacteria, the phage DNA becomes integrated into the bacterial chromosome and replicates along with it. In this lysogenic state, the information contained in the viral nucleic acid is not expressed. The model organism for studying lysogeny is the lambda phage. Roughly 50-60 nucleotides are taken out of the lysogenic pathway and used.
In some interactions between lysogenic phages and bacteria, lysogenic conversion may occur. It is when a temperate phage induces a change in the phenotype of the infected bacteria that is not part of a usual phage cycle. Changes can often involve the external membrane of the cell by making it impervious to other phages or even by increasing the pathogenic capability of the bacteria for a host.
Examples:
Extra genes present in prophage genomes which do not have a phage function but (may) act as fitness factors for the lysogen are termed "morons" (more DNA).[1]